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THE MICHIGAN PHYSIDAE REVISITED: A POPULATION GENETIC SURVEY

Robert T. Dillon, Jr.' & Amy R. Wethington?

ABSTRACT

We report an analysis of gene frequencies at 7 polymorphic allozyme-encoding loci in 16
populations of physid snails collected from Michigan, surveyed as a step toward integrat-
ing Te's (1978) influential classification of the Physidae with a more comprehensive sys-
tem based on genetic interrelationships and breeding data. Analysis of a genetic distance
matrix revealed three groups — two populations of Aplexa hypnorum together, five popula-
tions of Physa acuta together, and nine populations of P. gyrina, P. sayii, and P. parkeri
combined. Allozyme divergence among the populations of this last cluster, referred to as
the “gyrina group,” was comparable to that seen among the five populations of the well-
characterized P. acuta cluster, which breeding experiments have demonstrated biologi-
cally conspecific. These results suggest that Michigan populations assigned to P. gyrina,
P. sayii, and P. parkeri may comprise a single biological species, the globose and often
shouldered shell morphology of the latter resulting from local and perhaps phenotypically
plastic responses to lacustrine environments. The 14 “taxonomic units” from Michigan that
Te included in his analysis may represent as few as four biological species. A reduction in
nominal higher levels of classification within the Physidae is called for.
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INTRODUCTION

The freshwater pulmonate family Physidae
includes some of the more common and wide-
spread gastropod species on earth (Burch,
1989; Dillon, 2000; Dilion et al., 2002). In North
America, the most influential classification of
the family is currently that of George A. Te
(1978, 1980). Te's analysis, based on 71 char-
acters scored primarily from the shell and re-
productive anatomy, suggested that the 85
taxonomic units he recognized might be di-
vided into four genera: Aplexa, Stenophysa,
Physa and Physella, the last genus with three
subgenera (Petrophysa, Costatella, and
Physella s.s.). This classification was adopted
by Burch for his “North American Freshwater
Snails” (Burch, 1989), and subsequently by
Brown (1991), Turgeon et al. (1998), and many
others.

A wealth of data regarding genetic relation-
ships among the North American physids has
accumulated in the 25 years since Te proposed
his classification. Reports have been published
detailing gene frequencies at allozyme-encod-
ing loci among a variety of nominal species

(Buth & Sulloway, 1983; Liu, 1993; Dillon &
Wethington, 1995; Jarne et al., 2000). More
recently, data have become available on DNA
sequence divergence (Remigio et al., 2001;
Wethington & Guralnick, 2004; Wethington et
al., in prep.) and microsatellite polmorphisms
(Bousset et al., 2004). Controlled breeding
studies have uncovered little reproductive iso-
lation among physid populations long as-
sumed to represent different species,
prompting calls for a reappraisal of system-
atic relationships within the family (Dillon et
al., 2002, 2004; Dillon & Wethington, 2004;
Dillon et al., in press 2). The classification sys-
tem proposed by Wethington (2003; Wething-
ton & Lydeard, in press) would return the
number of genera to two — Physa and Aplexa.

Ideally, a new classification of the Physidae
would integrate Te’s morphological observa-
tions with more recent allozyme, DNA, and
breeding data into a single unified system.
Unfortunately, however, Te did not report col-
lection localities or museum lot numbers for
the 85 taxa upon which his 1978 classification
was based, nor did he provide figures, keys,
or any practical method by which the species

‘Department of Biology, College of Charleston, Charleston, South Carolina 29424, U.S.A.; dillonr@cofc.edu
2Science Department, Chowan College, 200 Jones Drive, Murfreesboro, North Carolina 27855, U.S.A.



134 DILLON & WETHINGTON

he recognized might be distinguished. Since
any effort to modernize or update Te’s system
would ideally begin with a resampling of his
taxa to gather correlative genetic information,
progress in physid‘systematics has been
slowed.

Fortunately, Te (1975) did publish one pre-
liminary paper, “Michigan Physidae, with sys-
tematic notes on Physella and Physodon’™.
Although limited to just the six species and
eight subspecies he recognized in the state,
Te provided figures, a dichotomous key (based
on shell characters), anatomical notes, syn-
onymy, range data, and a “partial phylogenetic
tree” for this subset. The purpose of the
present paper is to report the results of a sur-
vey of genetic divergence at allozyme-encod-
ing loci among a farge sample of physid
populations from Michigan, identified using the
conchological key of Te (1975), as a step to-
ward reconciling Te's 1978 classification with
more recent classifications pased on genetic
data (Wethington, 2003: Wethington &
Lydeard, in press).

The physid fauna of Michigan includes three
nominal species sharing the “type B” penial
morphology, Physa gyrina, P. sayii, and P.
parkeri, all assigned by Te to the subgenus
“Physella’. He noted some minor differences
among these three species in the length ra-
tios of the glandular and non-glandular por-
tions of their penial sheaths, as well as the
transparency of the non-glandular region and
terminal swelling in the glandular. But Te
(1975) wrote, “Physa gyrina, P. sayii and P.
parkeri are all related in one species complex.
As such, there are intermediate forms that may
be difficult to place; this is especially a prob-
lem between P. gyrina and P. sayii.”

Burch & Jung (1992) also found the Michi-
gan species of the subgenus Physella difficult
to distinguish. They wrote, “Qur approach has
been to note morphological groups that corre-
spond to named entities (nominal species) that
seem distinct enough to possibly be good spe-
cies.” Burch & Jung recognized four “named
entities” of Physella (s.s.) inhabiting northern
Michigan: globose, strongly shouldered P.
parkeri, elliptical or elongate-ovate P. gyrina,
ovate thin P. sayii, and ovate thick P.
magnalacustris, which Te considered a sub-
species of P. sayii. As the systematic relation-
ships within this group have continued to prove
especially problematic, populations of physids
from the subgenus Physella were the objects
of particular attention in the investigation re-
ported here.

METHODS

Our field survey was designed to sample the
physid species reported by Te (1 975), identi-
fied using the conchological key he provided,
collected from their representative ranges
across the state of Michigan. Ultimately, we
sampled 16 populations, including two of
Aplexa hypnorum, two of Physa sayii, three of
Physa parkeri, four of Physa gyrina, and five
of Physa acuta. The last-listed species was
identified as “P. integra” by Te, a name that
has subsequently been synonymized (Dillon
et al., 2002). Sample sites are shown in Fig-
ure 1, with locality data and sample sizes listed
in the Appendix. We were unable to collect the
sixth species reported by Te, Physa jennessi,
from any of the seven Michigan sites he listed.

Whole-snail homogenates were centrifuged
and analyzed via horizontal starch gel elec-
trophoresis using methods and apparatus as
described by Dillon (1992). Multiple buffer sys-
tems were employed where possible to screen
for hidden variation (Coyne & Felton, 1978).
The AP6 buffer system of Clayton & Tretiak

FIG. 1. Outline map of the state of Michigan, show-

ing sample sites. A= Aplexa hypnorum, G=Physa
yrina, | = Physa acuta, P = Physa parkeri, S =

Physa sayii. See Appendix for locality data.
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(1972) was used to resolve 6-phospho- been confirmeq for EST3 ang LAP by Dillon &
gluconate dehydrogenase (6PGD), leucine Wethington (1994), angd for GPj, PGM, ang
aminopeptidase (LAP), glucose phosphate 6PGD in planorbids by Mulvey & Vrijenhoek
isomerase (GPI1), and isocitrate dehydroge- (1984) and Mulvey et 3. (1988).

hase (ISDH). we employed the TC6.8 buffer Data analysis was performed using Biosys
System of Mulvey & Vrijenhoek (1981) to re- version 1.7 (Swofford & Selander, 1981). Be-

(MPI). The TEBS system (buffer 11l of Shaw & genotypes be pooled into three classes: ho-
Prasad, 1970) was used to analyze LAP, mozygotes for the most common allele, com-
6PGD, and the esterases ( EST3). mon/rare heterozygotes, and rare homozygotes

Our initial runs included control samples of together with other heterozygotes before test-
Opulation in- ing for Hardy-Weinberg equilibrium, Yates-cor-
arles Towne rected chi-square statistics were then employed

I cm

S P

FIG. 2. Exemplar shells of the five physid species examined in this study. | — Physa acuta (Population
11), S - Physa sayii (population §1 ). G~ Physa gyrina (population G1), A- Aplexa hypnorum (popula-
tion A2), p_ Physa parkeri (population P1). See appendix for locality data,
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Chord Distance
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FIG. 3. Nei’s (1978) unbiased genetic identities are shown below the diagonal, with nominally con-
specific comparisons darkly shaded and other comparisons within the gyrina complex shaded lightly.
Above the diagonal is the result of a UPGMA cluster analysis based on Cavalli-Sforza & Edwards

(1967) chord distance.

RESULTS

We found Te's (1975) conchological key diffi-
cult to apply to natural populations collected from
the wild, failing entirely in smaller individuals.
Although Aplexa and (generally) P. acuta could
be distinguished unambiguously, shell morpho-
logical variation within and among populations
of P. gyrina, P, sayii, and P, parkeri often thwarted
positive identification. Nor have any anatomical
distinctions been subsequently described that
might facilitate this process. We would have
preferred to sample more populations of P. sayii
in particular, but intergradation with both P.
gyrina and P. parkeri made identification of this
taxon especially problematic. The shells cho-
sen for illustration in Figure 2 are exemplars.
Voucher specimens have been deposited in the
University of Michigan Museum of Zoology.

Aliele frequencies at the seven enzyme-en-
coding loci are given in Table 1. Ofthe 16 x7 =
112 loci examined, a total of 54 were polymor-
phic by the 95% criterion. Chi-square analysis
revealed heterozygote deficits nominally signifi-
cant at the 0.05 level in six of these cases —
Est3 at population 14, Isdh in population 13, Est3
in population G3, and three polymorphic loci in
population |5: Est3, Lap, and Isdh.
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FIG. 4. Neighbor-joining tree (PAUP*; Swofford
1998) based on the matrix of Cavalli-Sforza &
Edwards (1967) chord distance.
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Figure 3 shows the matrix of Nei’s genetic
identity among all pairs of populations and the
results of an UPGMA cluster analysis based
on Cavalli-Sforza and Edwards Chord distance.
The cophenetic correlation (Sokal & Rohlf,
1962) for this analysis was very high, res = 0.993
(Sneath & Sokal, 1973: 304), indicating a good
fit between the branch length and the original
distance matrix. The neighbor-joining tree is
shown in Figure 4.

DISCUSSION

Fits to Hardy-Weinberg expectation were
good in almost all populations, with scattered
nominally significant values of chi square prob-
ably attributable to Type 1 statistical error. The
exception was population 15, where significant
heterozygote deficits were apparent at three
of five polymorphic loci examined. Outcross-
ing is strongly preferred in laboratory popula-
tions of Physa acuta, self-fertilization resulting
in a substantial fitness decrement (Wethington
& Dillon, 1993, 1996, 1997). Evidence of in-
breeding has nevertheless often been reported
in natural populations of Physa (Dillon &
Wethington, 1995; Jarne et al., 2000) and other
pulmonates (Jarne 1995). Some low level of
self-fertilization may be an unavoidable con-
sequence of the pulmonate reproductive sys-
tem (Dillon et al., in press 1). At the 15 site,
low population densities may have increased
the frequency of self-fertilization beyond the
background levels that were more difficult to
detect in other populations at our sample sizes.

Both the neighbor-joining tree and the
UPGMA cluster analysis revealed three dis-
tinct groups — the two populations of Aplexa
together, the five populations of P. acuta to-
gether, and the nine populations of P. gyrina,
P. sayii, and P. parkeri combined (Figs. 3, 4).
The five P. acuta populations, clustered at a
chord distance of 0.37, showed a minimum
genetic identity of 0.718. This is quite similar
to the level of genetic divergence among the
ten populations of P. acuta sampled from the
Charleston area by Dillon & Wethington
(1995). This level is also strikingly similar to
that displayed within the nine populations of
the gyrina/sayii/parkeri group, clustered at a
chord distance of 0.43 with a minimum genetic
identity of 0.715. The specific distinction be-
tween P. gyrina, P. sayii, and P. parkeri, here-
after referred to as the “gyrina group”, is called
into question.
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Physa gyrina ranges broadly across North
America, throughout Canada and the United
States as far south as Virginia and Kentucky.
In Michigan, Te reported populations from a
wide variety of shallow habitats — creeks,
brooks, pools, ponds, and ditches. The ranges
of Physa sayii and P. parkeri are more re-
stricted to the Great Lakes region and to
deeper waters, Te giving the habitat of the
former as “lakes and rivers” and the habitat of
the latter as “large lakes”.

Both Figures 3 and 4 depict the sayii/parkeri
cluster as a subset within the larger gyrina
group. This suggests to us that the generally
larger, inflated, and globose shell that charac-
terizes populations referred to these two
nomena may be a regional (and possibly
ecophenotypic) response to the colonization
of lacustrine habitats by populations of the
more typical P. gyrina morphology. We hypoth-
esize that individuals inhabiting larger lakes and
rivers may tend to live longer, and hence grow
larger of body, than individuals inhabiting ponds
and creeks. It also possible that the rotund, glo-
bose and often shouldered shell phenotype
characterizing P. parkeri (and sometimes P,
sayii) may be related to a deepwater habitat
unaffected by current or wind.

The tendency for physid snails to develop
rotund shells as a phenotypically plastic re-
sponse to the threat of fish predation is welt
documented (DeWitt, 1998; DeWitt et al.,
1999, 2000; Langerhans & DeWitt, 2002).
More recently, Britton & McMahon (2004) have
reported that physids respond to increased
water temperature by developing wider shell
spire angle, a variable positively correlated
with shell globosity. It seems clear that the
minor differences in shell morphology upon
which rest the distinctions among the several
nominal species of the gyrina group need not
reflect any heritable variance whatsoever.

Breeding experiments would provide the
ideal test to confirm that the three nominal
species of the gyrina group inhabiting Michi-
gan are in fact biologically conspecific. Dilion
& Wethington (2004) reported the results of
no-choice mating experiments between a line
of P. parkeri from Douglas Lake and P. gyrina
collected from its type locality near Council
Bluffs, lowa. Our control P, parkeri hatched and
reared under laboratory conditions did not
develop the shoulder on their shell character-
istic of wild-collected animals, remaining su-
perficially indistinguishable from control P,
gyrina. Control parkeri hybridized readily with
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P. gyrina, producing viable F1 offspring. The
growth, survival rate, and fecundity of P.
parkeri were, however, significantly below
those posted by control P. gyrina, in both the
control pairs and in the outcross parkeri x
gyrina experiment. We were ultimately unable
to carry either control P. parkeri or parkeri x
gyrina hybrids to the F2 generation under our
culture conditions, leaving the question of re-
productive isolation an open one. Our experi-
ments nevertheless confirmed that the life
history adaptations evolved by P. parkeri have
a heritable basis, although some key aspects
of shell morphology, upon which the taxonomy
is based, may not.

The overall form of the analyses shown in
Figures 3 and 4 is consistent with the phylog-
eny suggested by Wethington (2003) and
Wethington & Lydeard (in press). Mitochon-
drial COIl and 16s sequence data, analyzed
via parsimony, yielded a tree in which the gen-
era Aplexa and Physa split first, followed by a
split between the clade containing P, acuta and
the clade containing the gyrina group. The
analysis of Wethington & Lydeard also re-
solved two clades within the gyrina group: a
“typical” subset and a “globose” subset that
included parkeri and sayii (subspecies magna-
lacustris.) The authors attributed this distinc-
tion to geographical factors, however, not to
reproductive isolation.

Our allozyme data, taken together with the
partial results of the Dillon & Wethington (2004)
breeding experiments, suggest that the nomi-
nal taxa P. parkeri and P. sayii may best be
treated as junior synonyms of P. gyrina. Final
confirmation of this hypothesis will await care-
ful analysis. of reproductive interactions be-
tween populations of these three nominal
species in natural sympairy. Given the difficulty
we and other workers have encountered dis-
tinguishing members of the gyrina group in the
field, however, it may materialize that no prac-
tical site for such a study can be identified.

The 85 taxonomic units upon which Te (1978,
1980) based his classification included all 14
of the taxa he recognized from Michigan:
Aplexa hypnorum (tryoni and hypnorum s.s.),
Physa jennessi (subspecies skinneri), Physa
gyrina (elliptica, hildrethiana, and gyrina s.s.),
Physa sayii (magnalacustris, vinosa, and sayii
s.8.), Physa parkeri (latchfordii and parkeri
s.s.), and Physa integra (brevispira, walkeri,
and integra s.s.). Including P. jennessi, the
validity of which we have no reason to doubt,
our allozyme data suggest that these 14 taxa
may comprise just four biological species. Itis

clear that Te's analysis was based on a set of
taxonomic units divided much more finely than
biological species. This suggests to us that the
revised classification of Wethington & Lydeard,
returning the Physidae to a simpler two-genus
system, has much to recommend it.
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APPENDIX
Locality data and sample sizes

A1 Aplexa hypnorum. Woodland pond at the
Maple Bay access of Burt Lake,
Cheboygan Co., Michigan. 45.4867°N,
84.7088°W. N = 21.

A2 Aplexa hypnorum. Houghton Lake at state
campground, Roscommon Co., Michigan.
44.3388°N, 84.6648°W. N = 26.

G1 Physa gyrina. Little Lake at state camp-
ground, 1 km S of town of Little Lake,

G2

G3

G4

P1

P2

P3

S1

S2

Marquette Co., Michigan. 46.2815°N,
87.3337°W. N = 31.

Physa gyrina. Little Carp River at
Hogsback Rd., 1 km N of Burt Lake,
Cheyboygan Co., Michigan. 45.5520°N,
84.6854°W. N = 28.

Physa gyrina. Turtle Lake at Miller Rd., 5
km W of Bendon, Benzie Co., Michigan.
44.6178°N, 85.9090°W. N = 24.

Physa gyrina. Twin Sun Lakes at Highgate
Beach, Wixom, Oakland Co., Michigan.
42.5466°N, 83.5085°W. N = 33.

Physa acuta. Douglas Lake at the Uni-
versity of Michigan Biological Station,
Cheboygan Co., Michigan. 45.5634°N,
84.6783°W. N = 32.

Physa acuta. Higgins Lake near boat
ramp at Sam O Set Blvd., Sharps Corners,
Roscommon Co., Michigan. 44.4246°N,
84.6942°W. N = 31.

Physa acuta. Saginaw Bay at Quani-
cassee Wildlife Area, Tuscola Co., Michi-
gan. 43.5896°N, 83.6774°W. N = 57.
Physa acuta. Pond near the junction of
Mi 11 and Mi 37, Grand Rapids , Kent Co.,
Michigan. 42.9168°N, 85.5771°W. N = 44,
Physa acuta. Kent Lake at Kensington
MetroPark, Oakland Co., Michigan.
42.5336°N, 83.6462°W. N = 29.

Physa parkeri. Douglas Lake at the Uni-
versity of Michigan Biological Station,
Cheboygan Co., Michigan. 45.5634°N,
84.6783°W. N = 59.

Physa parkeri. Long Lake at Long Lake
Rd., 10 km SE of Traverse City, Grand
Traverse Co., Michigan. 44.7140°N,
85.7316°W. N = 37.

Physa parkeri. Higgins Lake near boat
ramp at Sam O Set Bivd., Sharps Corners,
Roscommon Co., Michigan. 44.4246°N,
84.6942°W. N = 47.

Physa sayii. Lake Michigan at Wilderness
State Park, Emmet Co., Michigan.
45.7474°N, 84.9045°W. N = 49.

Physa sayii. Crystal Lake 3 km N of Frank-
fort, Benzie Co., Michigan. 44.6607°N,
86.2320°W. N = 39.
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